Graph Attention Networks
نویسندگان
چکیده
We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods’ features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-theart results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a proteinprotein interaction dataset (wherein test graphs remain unseen during training).
منابع مشابه
A Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks
In the various fields of disaster management, choosing the best location for the Emergency Support & Supply Service Centers (ESSSCs) and the survivability of the network that provides the links between ESSSCs and their environment has a great role to be paid enough attention. This paper introduces a graph based model to measure the survivability of the linking's network. By values computed for ...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملA Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring
All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملOmega and PIv Polynomial in Dyck Graph-like Z(8)-Unit Networks
Design of crystal-like lattices can be achieved by using some net operations. Hypothetical networks, thus obtained, can be characterized in their topology by various counting polynomials and topological indices derived from them. The networks herein presented are related to the Dyck graph and described in terms of Omega polynomial and PIv polynomials.
متن کاملVULNERABILITY ASSESSMENT OF WATER DISTRIBUTION NETWORKS: GRAPH THEORY METHOD
The main functional purpose of a water distribution network is to transport water from a source to several domestic and industrial units while at the same time satisfying various requirements on hydraulic response. All the water distribution networks perform two basic operations: firstly the water network needs to deliver adequate amounts of water to meet specific requirements, and secondly the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.10903 شماره
صفحات -
تاریخ انتشار 2017